

CLT - Madera contralaminada Building innovation. Building life.

CLT la madera contralaminada

Hay muchos motivos para decidirse por los elementos de madera contralaminada CLT de Stora Enso. Déjese convencer por la innovación y la calidad:

Sencillo y de gran calidad

- Elementos de gran tamaño hasta 2,95 m x 16 m
- Todas las juntas están encoladas a la estructura de tableros
- Prefabricados de una capa
- Fácil procesamiento en la obra
- Tiempos mínimos de construcción y montaje
- Construcción en seco con elementos prefabricados

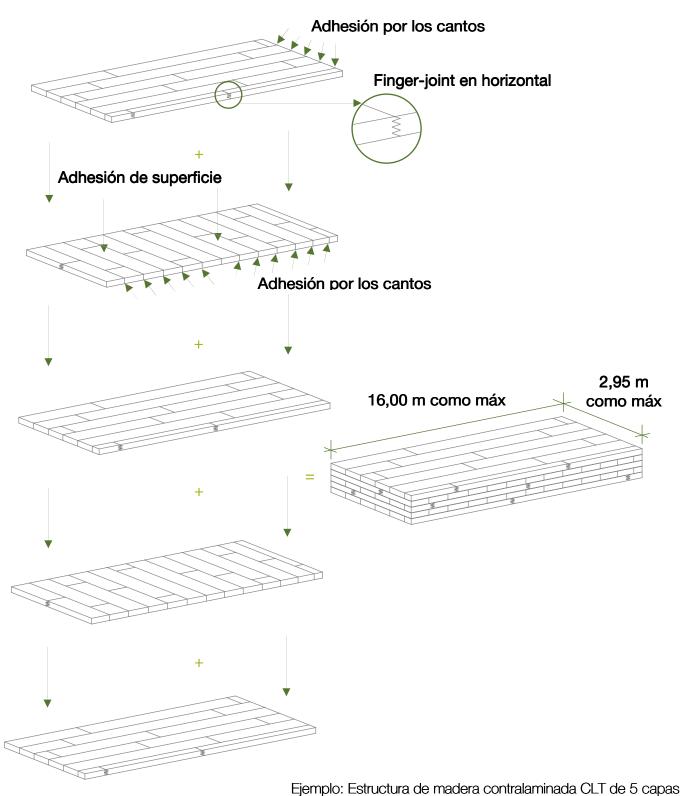
Natural y duradero

- Adhesivos sin formaldehído
- Clima ambiental saludable: la madera maciza actúa como regulador de la humedad del ambiente y absorbe las sustancias nocivas del aire
- Fabricado según criterios sostenibles, ofrece un óptimo balance energético y de CO2

Combinable

- Prácticamente sin asentamiento
- Perfectamente compatible con materiales de construcción convencionales (anexos, ampliaciones, etc.)
- La mayoría de las veces no se necesita freno o barrera de vapor o contravapor: poro abierto a la difusión, sin láminas y sin cintas adhesivas
- Mayor masa de almacenamiento en comparación con las construcciones con entramado ligero de madera
- Superficie lijada de los elementos en calidad tanto visible como oculta

Innovador y seguro


- Impermeabilidad al aire y al viento
- Predestinado para zonas sísmicas
- Clara separación del elemento de carga respecto a la capa aislante.

Estructura de CLT

Nuestra madera contralaminada CLT esta formado de paneles monocapa encolados de forma entrecruzada.

La anchura máx. de producción es de 2,95 m y la longitud máxima en que se pueden producir es de 16,00 m.

CLT – Madera contralaminada

Datos característicos generales del CLT

Aplicación	Principalmente como elementos de pared, para forjados y cubiertas en viviendas y todo tipo de edificios
Anchura máxima	2,95 m
Longitud máxima	16,00 m
Grosor máximo	40 cm
Estructura capa	Paneles monocapa encolados en cruz
Tipos de madera	Abeto rojo (Picea Abies) (pino o alerce previa petición))
Tipo de clasificación	C24 (otros clases resistentes previa petición)
Humedad de la madera	12% ± 2%
Adhesivo	Adhesivos sin formaldehído para el encolado de cantos, finger-joint y encolado de superficie
Calidad óptica	Calidad visual y industrial; la superficie está lijada en ambos casos
Peso propio	5,0 kN/m3 según DIN 1055-1:2002, para los cálculos de estática; para determinar el peso de transporte: aprox. 470 kg/m3

Datos característicos especiales del CLT

•	
Deformaciónes por cambios de la humedad	En el plano del panel: 0,02 % de la modificación de longitud por cada 1 % de cambio de humedad de la madera Perpendicular al plano del panel: 0,24 % de la modificación de longitud por cada
	1 % de cambio de humedad de la madera
Clase de reacción al fuego	Según la resolución de la Comisión 2003/43/CE: D-s2, d0
Factor de resistencia a la difusión del vapor de agua μ	Según EN 12524 → 20 a 50
Conductividad térmica λ	Según el peritaje de SP Suecia del 10.07.2009 → 0,11 W/(mK)
Capacidad térmica específica c _p	Según EN 12524 → 1600 j/(kgK)
Hermeticidad al aire	Según EN 12 114
Clases de uso/ aplicabilidad	Según EN 1995-1-1 es utilizable en las clases de uso 1 y 2.

Estructuras estándar de CLT

ESTRUCTURAS DE PARED

Grosor nominal [mm]	Denomin ación	Capas		Estructura de láminas [mm]						Anchos de tablero estándar [cm]	Longitud de tablero máximo [cm]	
			С	L	С	L	С	L	С			
57	3s	3	19	19	19					245; 275; 295	1600	
83	3s	3	27,	28	27,					245; 275; 295	1600	
97	3s	3	35	27	35					245; 275; 295	1600	
95	5s	5	19	19	19	19	19			245; 275; 295	1600	
138	5s	5	27,	27,	28	27,	27,			245; 275; 295	1600	
161	5s	5	35	28	35	28	35			245; 275; 295	1600	
FOTDI	IOTI IDA	0.05.50	SD 14	D.O.								

ESTRU	JCTURA:	S DE FO	DRJA	DO								
Grosor nominal	Denomin ación	Capas		Е	Estruct	ura de	lámina	S		Anchos de tablero estándar	Longitud de tablero máximo	
[mm]		[]				[mm]				[cm]	[cm]	
			L	С	L	С	L	С	L			
57	3s	3	19	19	19					245; 275; 295	1600	
74	3s	3	27,	19	27,					245; 275; 295	1600	
83	3s	3	27,	28	27,					245; 275; 295	1600	
97	3s	3	27,	42	27,					245; 275; 295	1600	
103	3s	3	42	19	42					245; 275; 295	1600	
112	3s	3	42	28	42					245; 275; 295	1600	
119	3s	3	42	35	42					245; 275; 295	1600	
126	3s	3	42	42	42					245; 275; 295	1600	
95	5s	5	19	19	19	19	19			245; 275; 295	1600	
121	5s	5	27,	19	28	19	27,			245; 275; 295	1600	
138	5s	5	27,	27,	28	27,	27,			245; 275; 295	1600	
150	5s	5	42	19	28	19	42			245; 275; 295	1600	
165	5s	5	42	19	43	19	42			245; 275; 295	1600	
182	5s	5	42	27,	43	27,	42			245; 275; 295	1600	
196	5s	5	42	35	42	35	42			245; 275; 295	1600	
211	5s	5	42	42	43	42	42			245; 275; 295	1600	
194	7s	7	27,	27,	28	28	28	27,	27,	245; 275; 295	1600	
216	7s	7	27,	35	28	35	28	35	27,	245; 275; 295	1600	
237	7s	7	27,	42	28	42	28	42	27,	245; 275; 295	1600	
209	7s-2	7*	55	35,	28	35,	55			245; 275; 295	1600	
223	7s-2	7*	55	42,	28	42,	55			245; 275; 295	1600	
249	7s-2	7*	84	19	43	19	84			245; 275; 295	1600	
267	7s-2	7*	84	28	43	28	84			245; 275; 295	1600	
296	7s-2	7*	84	43	42	43	84			245; 275; 295	1600	

^{* 7} capas, las capas exteriores están formadas por 2 estratos longitudinales

Fecha de redacción: 04/2010

Denominación de los tableros: por ej.: CLT 97 C3s, CLT 165 L5s o CLT 249 L7s-2

(L: capa superior longitudinal, C: capa superior de través)

Utilización en

locales comerciales u oficinas

Tipo de construcción Guardería

Localización Graz (Austria)

Cantidad utilizada de CLT aprox. 175 m³

Analysis estructural

Aspectos generales en la planificación de la estructura portante con CLT

Los tableros monocapa con un encolado superpuesto y entrecruzado permiten una distribución de la carga en dos ejes, lo que, hasta ahora, estaba reservado a las construcciones con hormigón armado.

En la planificación, las ventajas aportadas son un diseño más flexible de los interiores, construcciones más simples y techos en bruto de menor altura.

Aunque las construcciones salientes en esquina o de apoyo puntual requieren una planificación más compleja, se las pueden realizar sin problemas.

Los elementos de CLT tienen una gran resistencia de carga, porque la anchura portante del elemento suele abarcar la anchura total del elemento gracias a las capas transversales.

La elevada rigidez intrínseca del CLT tiene un efecto positivo también sobre el arriostramiento del edificio.

Método de cálculo de CLT

La diferencia de la forma de medir la madera maciza o la madera laminada encolada es el esfuerzo de las capas transversales.

En un elemento de CLT, una carga recta con respecto al nivel del tablero (como por ej. la carga de nieve en una cubierta plana) genera en las capas transversales un esfuerzo cortante en sentido vertical a la dirección de la fibra.

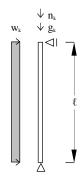
Este esfuerzo cortante se llama cortante por rodamiento de fibra porque las fibras de la madera, al romperse, « ruedan » transversalmente.

La baja rigidez o esfuerzo cortante del plano transversal (carga perpendicular a la fibra) condiciona que no se puedan ignorar las tensiones o deformaciones actuantes.

El cálculo puede realizarse según la teoría de la unión sin tener en cuenta las deformaciones de cortante.

En general, hay diferentes aproximaciones para caracterizar matemáticamente la madera contralaminada. Una de ellas es la « Teoría de las capas unidas entre sí de forma elástica » (también conocida como el « Método Gamma ». El « Método Gamma » es el más corriente y estä descrito también en la homologación ETA-08/0271

Medios de fijación


La comprobación de los medios de unión se describe y regula en las homologaciones.

Tablas de predimensinado para CLT

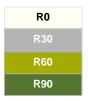
Las tablas de las páginas siguientes han sido elaboradas por Stora Enso según su leal saber y entender, pero no pueden sustituir los cálculos de estática para el caso concreto. La información que contiene se corresponde al nivel actual de la técnica, no obstante no se excluye la posibilidad de que incurra en errores.

Por esta razón, Stora Enso no asume ninguna responsabilidad por este concepto y recomienda expresamente al usuario de esta tabla de predimensionamiento que compruebe a su arbitrio que los resultados sean correctos.

Paredes exteriores

Según la homologación Z 9.1-559 DIN 1052 (2008) y EN1995-1-1 (2006)

Carga permanente	Carga de uso					ALTURA	(Longitud	l libre de p	andeo ℓ)					
gk* ⁾	Nk		2,4	5 m			2,7	5 m			2,9	5 m		
[KN/m]	[KN/m]	R 0	R 30	R 60	R 90	R 0	R 30	R 60	R 90	R 0	R 30	R 60	R 90	
	10,00		83 C3s	83 C3s	97 C3s			97 C3s	97 C3s			97 C3s	97 C3s	
	20,00	57 C3s		97 C3s	97 038	57 C3s		97 038		57 C3s	97 C3s	97 038		
10,00	30,00	37 C38		97 038			97 C3s							
10,00	40,00		97 C3s		138 C5s		91 035	95 C5s	138 C5s			95 C5s	138 C5s	
	50,00	83 C3s		95 C5s	130 005	83 C3s		93 C08		83 C3s		93 C08		
	60,00	03 033												
	10,00			97 C3s	97 C3s			97 C3s		57 C3s		97 C3s		
	20,00	57 C3s		37 038		57 C3s		97 038		37 038				
20,00	30,00	37 033	97 C3s				97 C3s		138 C5s		97 C3s		138 C5s	
20,00	40,00			95 C5s	138 C5s		31 000	95 C5s	130 003	83 C3s	31 000	95 C5s	130 003	
	50,00	83 C3s		33 003		83 C3s		95 Cos		83 C3s				
	60,00	63 C38												
	10,00			97 C3s		57 C3s		97 C3s		57 C3s				
	20,00	57 C3s				37 038				20.00	97 C3s			
30,00	30,00	83 C3s	97 C3s		138 C5s		97 C3s		138 C5s			95 C5s	138 C5s	
30,00	40,00			95 C5s		83 C3s	97 038	95 C5s	130 038	83 C3s	97 038		136 058	
	50,00		83 C3s				03 003							
	60,00											138 C5s		
	10,00	57 C3s		97 C3s		57 C3s								
	20,00	37 C38										95 C5s		
40,00	30,00	22.00	97 C3s		138 C5s		97 C3s	95 C5s	138 C5s	83 C3s	97 C3s	95 C5S	138 C5s	
40,00	40,00			95 C5s	130 038	83 C3s	97 038		130 038		97 038		136 058	
	50,00	83 C3s										138 C5s		
	60,00							138 C5s				130 008		
	10,00	57 C3s												
	20,00							95 C5s				95 C5s		
50,00	30,00		97 C3s	95 C5s	138 C5s	83 C3s	97 C3s	90 008	138 C5s	83 C3s	97 C3s		138 C5s	
50,00	40,00	83 C3s		90 008	130 Cos	03 038	91 C3S		130 Cos		97 C3S		130 Cos	
	50,00							138 C5s				138 C5s		
	60,00							136 Cos						
	10,00											95 C5s		
	20,00							95 C5s				95 Cos		
60,00	30,00	83 C3s	07 C2e	95 C5s	138 C5s	83 C3s	97 C3s	95 Cos	120 CE0	83 C3s	07 C2a		138 C5s	
60,00	40,00	03 USS	97 C3s	95 C58	130 Cos	03 C38	97 C38		138 C5s	03 C38	97 C3s	120 05-	136 Cos	
	50,00							400.05		_		138 C5s		
	60,00			138 C5s				138 C5s						


^{*} El peso propio del CLT ya se ha contemplado en la tabla con el valor ρ =500kg/m³. Presión del viento: wk = 0,80 kN/m².

Clase de servicio 1, categoría de carga útil A (ψ_0 =0,7; ψ_1 =0,5; ψ_2 =0,3)

Estado limite último

- a) Comprobación como barra sometida a pandeo (presión y flexión según el método de barra equivalente)
- b) Esfuerzo cortante kmod=0,8

Resistencia al fuego: β=0,65mm/min

Esta tabla tiene como único objetivo proporcionar unas medidas de predimensionado y no sustituye el cálculo estructural del proyecto.

Paredes interiores

Según la homologación Z 9.1-559 DIN 1052 (2008) y EN1995-1-1 (2006)

Carga permanente	Carga de uso					ALTURA	A (Longitud	d libre de p	andeo ℓ)					
g _k *)	n _k		2,4	5 m			2,7	'5 m			2,9	5 m		
[KN/m]	[KN/m]	R 0	R 30	R 60	R 90	R 0	R 30	R 60	R 90	R 0	R 30	R 60	R 90	
	10,00		83 C3s	83 C3s	07.020		83 C3s	83 C3s	07.020			07.020	97 C3:	
	20,00				97 C3s	F7 00-		07.00-	97 C3s	57 C3s		97 C3s		
10,00	30,00	57 C3s		97 C3		57 C3s		97 C3s			97 C3s			
10,00	40,00				420 CE0		97 C3s		138 C5s			97 035	95 C5s	138 C5
	50,00			OF CEO	138 C5s	93 C2a		95 C5s	130 038	83 C3s		95 C58		
	60,00	83 C3s		95 C5s		83 C3s								
	10,00				97 C3s			97 C3s	97 C3s	57 C3s		97 C3s		
	20,00	E7 C20		97 C3s		57 C3s		97 038		37 038				
20,00	30,00	57 C3s	07.020				97 C3s				07.020		138 C	
20,00	40,00		97 C3s		138 C5s	97 038	95 C5s	138 C5s	83 C3s	97 C3s	95 C5s	130 0		
	50,00	83 C3s		95 C5s		83 C3s		95 Cos		63 C38	05			
	60,00	83 C3S												
	10,00			97 C3s		57 C3s		97 C3s		57 C3s				
	20,00	57 C3s		97 C3S		37 C38					97 C3s			
30,00	30,00		07.00-		138 C5s		07.00-		400.05-			95 C5s	138 C5s	
	40,00			05.05-	138 Cos	83 C3s	97 C3s	95 C5s	138 C5s	83 C3s	97 C3S		138 C	
	50,00	83 C3s		95 C5s		83 C38								
	60,00											138 C5s		
	10,00	10,00	57 C3s		97 C3s		57 C3s				57 C3s			
				37 C38							,			OF CFo
40,00	30,00		07 00		420.05-		97 C3s	95 C5s	120 CEc		97 C3s	95 C5s	138 C	
40,00	40,00	83 C3s		95 C5s	138 C5s	83 C3s			138 C5s 83 C	83 C3s			130 0	
	50,00	63 C38										138 C5s		
	60,00											138 Cos		
	10,00	57 C3s												
	20,00											95 C5s		
50,00	30,00		97 C3s	95 C5s	420 CE0	83 C3s	97 C3s	95 C5s	138 C5s	83 C3s	97 C3s	95 Cos	138 C	
50,00	40,00	83 C3s		95 C58	138 C5s	63 C38	97 038		130 038	63 C38	97 038		130 0	
	50,00											420 CF-		
	60,00							138 C5s				138 C5s		
	10,00													
	20,00							05.05				95 C5s		
00.00	30,00	00.00	07.00	05.05	420.05	00.00	07.00	95 C5s	420-05	00.00	07.00			
60,00	40,00	83 C3s		95 C5s	138 C5s	83 C3s	97 C3s		138 C5s	C5s 83 C3s	97 C3s		138 C	
	50,00							400.05				138 C5s		
	60,00							138 C5s						

^{*} \boxminus peso propio del CLT ya se ha contemplado en la tabla con el valor $\rho =$ 500kg/m³. Sin presión del viento

Clase de servicio 1, categoría de carga útil A (ψ_0 =0,7; ψ_1 =0,5; ψ_2 =0,3)

Estado limite último:

- a) Comprobación como barra sometida a pandeo (presión y flexión según el método de barra equivalente)
- b) Esfuerzo cortante kmod=0,8


Resistencia al fuego: β=0,65mm/min

R0	
R30	
R60	
R90	

Esta tabla tiene como único objetivo proporcionar unas medidas de predimensionado y no sustituye el cálculo estructural del proyecto.

Viga de un vano

Vibración

Según la homologación Z 9.1-559; DIN 1052 (2008) y EN1995-1-1 (2006)

Carga permanente	Carga de uso				LUZ ENT	RE DOS AI	POYOS &			
g _k *)	n _k									
[KN/m]	[KN/m]	3,00 m	3,50 m	4,00 m	4,50 m	5,00 m	5,50 m	6,00 m	6,50 m	7,00 m
	1,00		83 L3s	103 L3s	103 L3s	112 L3s		165 L5s	182 L5s	211 L5s
	2,00	74 L3s	97 L3s	97 L3s	112 L3s	126 L3s	150 L5s	100 L08	196 L5s	209 L7s-
1,00	2,80			103 L3s	112 L35	126 L3s	150 L38			223 L7s-
1,00	3,50	83 L3s	97 L3s	103 L35	119 L3s	138 L5s		182 L5s	211 L5s	223 L/S
	4,00	83 L3s		112 L3s	126 L3s	150 L5s	165 L5s			249 L7s
	5,00	97 L3s	103 L3s	119 L3s	150 L5s	150 L38	100 L08	196 L5s	209 L7s-2	209 L7s
	1,00	74 L3s	97 L3s	402 20	112 L3s	126 L3s	450150		196 L5s	223 L7s
	2,00	83 L3s		103 L3s	440 20		150 L5s	182 L5s	211 L5s	249 L7s
4.50	2,80	63 L38	97 L3s		119 L3s				200 70 0	211 L5
1,50	3,50	00 1 0-		112 L3s	40010-	150 L5s	165 L5s	40015-	209 L7s-2	000 1 7-
	4,00	83 L3s	402 20		126 L3s			196 L5s	223 L7s-2	209 L7s
	5,00	97 L3s	103 L3s	119 L3s	150 L5s		182 L5s	211 L5s	211 L5s	223 L7s
	1,00	83 L3s	07.1.0-	103 L3s	119 L3s			182 L5s	209 L7s-2	249 L7s
	2,00	00 1 0-	97 L3s	44010-	126 L3s		165 L5s	40015-	000 7- 0	209 L7s
0.00	2,80	83 L3s		112 L3s	138 L5s	150 L5s	182 L5s	196 L5s	223 L7s-2	
2,00	3,50		103 L3s	119 L3s				044.1.5	04415	223 L7s
	4,00	97 L3s		119 L3s	150 L5s			211 L5s	211 L5s	
	5,00		103 L3s	119 L3S		165 L5s		196 L5s	209 L7s-2	249 L7s
	1,00	83 L3s		112 L3s	138 L5s		165 L5s	196 L5s	223 L7s-2	209 L7s
	2,00		103 L3s	119 L3s		150 L5s		04415	211 L5s	22217
	2,80			119 L3s			182 L5s	211 L5s		223 L7s
2,50	3,50	97 L3s	103 L3s		150 L5s			196 L5s	209 L7s-2	
	4,00		440.10	126 L3s		165 L5s	40015	24415		249 L7s
	5,00		112 L3s				196 L5s	211 L5s	223 L7s-2	
	1,00		400 1 0	119 L3s		150 L5s	400 5	211 L5s	211 L5s	223 L79
	2,00		103 L3s				182 L5s	196 L5s	209 L7s-2	
	2,80	97 L3s		126 L3s	450.15					
3,00	3,50		112 L3s		150 L5s	165 L5s	196 L5s	211 L5s	223 L7s-2	249 L7s-
	4,00			$\overline{}$		100 200			223 L75-2	
	5,00	103 L3s	112 L3s	138 L5s				209 L7s-2	249 L7s-2	

^{*} \boxminus peso propio del CLT ya se ha contemplado en la tabla con el valor ρ =500kg/m³.

Clase de servicio 1, categoría de carga útil A (ψ_0 =0,7; ψ_1 =0,5; ψ_2 =0,3)

- a) Comprobación de las tensiones de flexión
- b) Comprobación de las tensiones de flexión


 $k_{\text{mod=}}0.8$

Aptitud de uso:

- a) Situación de medición casi permanente: W $_{\rm fin} \le {}^\ell\!/_{250}$
- b) Situación de medición poco frecuente: $\mathbf{W}_{\mathrm{Q,inst}} \leq {}^{\ell}/_{300}$; $\mathbf{W}_{\mathrm{fin}} \mathbf{W}_{\mathrm{G,inst}} \leq {}^{\ell}/_{200}$;
- c) Vibraciones (según EN 1995-1-1 y Kreuzinger & Mohr) :

 $(f_1 > 8$ Hz o $f_1 > 4$ Hz con a=0,45m/s_, $v > v_{lim}$, $w_{EF} > 1$ mm) D=2%, 5cm de suelo de cemento, b=1,2 $_{-}$ ℓ ; $k_{def} = 0.6$

Resistencia al fuego: β=0,65mm/min

La vibración no depende del vano sino de la masa y por eso puede resultar un forjado más grueso aunque el vano sea menor. Esta tabla expone los grosores necesarios para la medición en frìo (RO). El fondo de colores representa el periodo de resistencia al fuego que también se alcanza con este grosor. Si requiere una resistencia al fuego más prolongada, deberá realizar sus propios cálculos. Esta tabla tiene como único objetivo proporcionar unas medidas de predimensionado y no sustituye el cálculo estructural del proyecto.

Viga de un vano

Deformación

Según la homologación Z 9.1-559; DIN 1052 (2008) y EN1995-1-1 (2006)

Carga permanente	Carga de uso				LUZ ENT	RE DOS A	POYOS &			
g _k *)	n _k									
[KN/m]	[KN/m]	3,00 m	3,50 m	4,00 m	4,50 m	5,00 m	5,50 m	6,00 m	6,50 m	7,00 m
	1,00		83 L3s	97 L3s	103 L3s	112 L3s	138 L5s	150 L5s	165 L5s	182 L59
	2,00	74 L3s	63 L38	91 L35	112 L3s	126 L3s		130 L35	103 L38	162 L3
4.00	2,80			402 20	112 L35	126 L3s	450150			196 L5
1,00	3,50	83 L3s	97 L3s	103 L3s	119 L3s	138 L5s	150 L5s	165 L5s	182 L5s	211 L5
	4,00	83 L3s		112 L3s	126 L3s	450150				211 L5
	5,00	97 L3s	103 L3s	119 L3s	150 L5s	150 L5s	165 L5s	182 L5s	211 L5s	209 L7s
	1,00	74 L3s	97 L3s	400 0-	112 L3s	126 L3s		405 5-	400 5-	196 L5
	2,00	00.1.0		103 L3s	440.10		150 L5s	165 L5s	182 L5s	044.15
4.50	2,80	83 L3s	97 L3s		119 L3s					211 L5
1,50	3,50			112 L3s		150 L5s			196 L5s	20017
	4,00	83 L3s			126 L3s		165 L5s	182 L5s		209 L7s-
	5,00	97 L3s	103 L3s	119 L3s	150 L5s				211 L5s	223 L79
	1,00	83 L3s		103 L3s	119 L3s		150 L5s	165 L5s		211 L5
	2,00		97 L3s	44010-	126 L3s				196 L5s	209 L79
	2,80	83 L3s		112 L3s	138 L5s	150 L5s		182 L5s		
2,00	3,50		103 L3s	119 L3s			165 L5s		211 L5s	223 L7s-2
	4,00	97 L3s		_	150 L5s			196 L5s		
	5,00		103 L3s	119 L3s		165 L5s	182 L5s		209 L7s-2	249 L79
	1,00	83 L3s		112 L3s	138 L5s			182 L5s		
	2,00		103 L3s	119 L3s		150 L5s	165 L5s		211 L5s	223 L79
	2,80			119 L3s				196 L5s		
2,50	3,50	97 L3s	103 L3s		150 L5s				209 L7s-2	
	4,00			126 L3s		165 L5s	182 L5s			249 L7s-2
	5,00		112 L3s					211 L5s	223 L7s-2	
	1,00			119 L3s		150 L5s			211 L5s	223 L79
	2,00		103 L3s					196 L5s	209 L7s-2	
3,00	2,80	97 L3s		126 L3s			182 L5s			
	3,50		112 L3s		150 L5s	5s 165 L5s		211 L5s	223 L7s-2	249 L7s-2
	4,00								223 E73-2	
	5,00	103 L3s	112 L3s	138 L5s	S		196 L5s	209 L7s-2	249 L7s-2	

^{*} \boxminus peso propio del CLT ya se ha contemplado en la tabla con el valor ρ =500kg/m³.

Clase de servicio 1, categoría de carga útil A (ψ_0 =0,7; ψ_1 =0,5; ψ_2 =0,3)

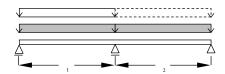
- a) Comprobación de las tensiones de flexión
- b) Comprobación de las tensiones de flexión

 $k_{\text{mod=}}0,8$

Aptitud de uso:

- a) Situación de medición casi permanente: $w_{fin} \leq {}^\ell\!/_{250}$
- b) Situación de medición poco frecuente: $\mathbf{W}_{\mathrm{Q,inst}} \leq {}^{\ell}\!/_{300}; \mathbf{W}_{\mathrm{fin}} \mathbf{W}_{\mathrm{G,inst}} \leq {}^{\ell}\!/_{200};$

 $k_{\text{def}} = 0,6$


Resistencia al fuego: β=0,65mm/min

Esta tabla expone los grosores necesarios para la medición en frìo (R0). El fondo de colores representa el periodo de resistencia al fuego que también se alcanza con este grosor. Si requiere una resistencia a la combustión más prolongada, deberá realizar sus propios cálculos. Esta tabla tiene como único objetivo proporcionar unas medidas de predimensionado y no sustituye el cálculo estructural del proyecto.

Viga de dos vanos

Vibración

Según la homologación Z 9.1-559; DIN 1052 (2008) y EN1995-1-1 (2006)

Carga permanente	Carga de uso		LUZ	Z ENTRE TE	RES APOYO	os e 1	ℓ ₂ =	0,8-ℓ₁ bis 1	, 0-ℓ ₁															
gk*)	Nk																							
[KN/m]	[KN/m]	3,00 m	3,50 m	4,00 m	4,50 m	5,00 m	5,50 m	6,00 m	6,50 m	7,00 m														
	1,00		83 L3s	74 L3s	97 L3s	112 L3s		165 L5s	182 L5s	211 L5s														
	2,00		74 L3s	83 L3s	103 L3s	119 L3s	150 L5s	103 233	196 L5s	223 L7s-2														
1,00	2,80	74 L3s	74 L3s	97 L3s	103 L3s	126 L3s			211 L5s	223 L/ 3-2														
1,00	3,50		83 L3s	31 L33	112 L3s	138 L5s		182 L5s	211 L35	249 L7s-2														
	4,00		97 L3s	103 L3s	112 L3s	150 L5s	165 L5s		209 L7s-2	249 L/ 5-2														
	5,00	83 L3s	91 L35	103 L3s	119 L3s	150 LSS		196 L5s	223 L7s-2	211 L5s														
	1,00		74 L3s		103 L3s	126 L3s	150 L5s	182 L5s	211 L5s	223 L7s-2														
	2,00	74 L3s	74 L3s	97 L3s	442120			102 L38	211 L38	249 L7s-2														
1,50	2,80		74 L38		112 L3s		165 L5s		209 L7s-2	196 L5s														
1,50	3,50	74100	83 L3s	402 00	440125	150 L5s	100 LOS	196 L5s	223 L7s-2	244 5-														
	4,00	74 L3s	07.1.0-	103 L3s	119 L3s				182 L5s	211 L5s														
	5,00	83 L3s	97 L3s	103 L3s	126 L3s		182 L5s	211 L5s	196 L5s	209 L7s-2														
	1,00	74 l 3s	74 L3s	97 L3s	112 L3s		40515-	40015-	209 L7s-2	196 L7s-2														
	2,00	74 L3s	74 L3s		103 L3s	119 L3s		165 L5s	196 L5s	223 L7s-2	04415													
2,00	2,80		83 L3s	400.10	40010	150 L5s		04415	182 L5s	211 L5s														
2,00	3,50		74 L3s	74 L3s	74 L3s	74 L3s	74 L3s	74 L3s	74 L3s	74 L3s	74 L3s	74 L3s	74 L3s		103 L3s	126 L3s		182 L5s	211 L5s	400 5				
	4,00			103 L3s	138 L5s			165 L5s	196 L5s	209 L7s-2														
	5,00	83 L3s	97 L3s	112 L3s	150 L5s	165 L5s	196 L5s	182 L5s	211 L5s	223 L7s-2														
	1,00	74 L3s		103 L3s	40010	45015			182 L5s	211 L5s														
	2,00		83 L3s	103 L3s	126 L3s	150 L5s	182 L5s	211 L5s		209 L7s-2														
	2,80	=41.0		112 L3s	138 L5s			165 L5s	196 L5s															
2,50	3,50	74 L3s					196 L5s			223 L7s-2														
	4,00		97 L3s	112 L3s	150 L5s	165 L5s	150 L5s	182 L5s	211 L5s															
	5,00	83 L3s		119 L3s			165 L5s			249 L7s-2														
	1,00			112 L3s	138 L5s		182 L5s	165 L5s	196 L5s															
	2,00	74 L3s								223 L7s-2														
	2,80		97 L3s	112 L3s		165 L5s	196 L5s		211 L5s															
3,00	3,50				150 L5s			182 L5s																
	4,00	83 L3s	83 L3s		119 L3s	150 L5S		165 L5s	s		249 L7s-2													
	5,00		103 L3s			182 L5s	_	196 L5s	209 L7s-2															

^{*} El peso propio del CLT ya se ha contemplado en la tabla con el valor ${f p}$ =500kg/m³.

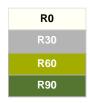
Clase de servicio 1, categoría de carga útil A (ψ_0 =0,7; ψ_1 =0,5; ψ_2 =0,3)

- a) Comprobación de las tensiones de flexión
- b) Comprobación de esfuerzo cortante

$k_{\text{mod=}}0,8$

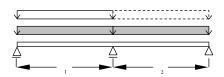
Aptitud de uso:

- a) Situación de medición casi permanente: w $_{\rm fin} \le {}^{\ell}/_{250}$
- b) Situación de medición poco frecuente: $w_{Q,inst} \le {}^{\ell}/_{300}$; $w_{fin} w_{G,inst} \le {}^{\ell}/_{200}$;
- c) Vibraciones (según EN 1995-1-1 y Kreuzinger & Mohr) :


 $(f_1 > 8$ Hz o $f_1 > 4$ Hz con a=0,4 m/s_, v < v $_{lim}$, $w_{EF} < 1$ mm) D=2%, 5cm de suelo de cemento, b=1,2 $_{-}$ ℓ ; k_{def} =0,6

La vibración no depende del vano, sino de la masa y por eso puede resultar un forjado más grueso aunque el vano sea menor. El cálculo se ha realizado con la carga útil sobre un vano. Si hay carga útil sobre los dos vanos, puede reducirse en algunos casos el grosor necesario del forjado.

Esta tabla expone los grosores necesarios para la medición en frio (RO). El fondo de colores representa el periodo de resistencia al fuego que también se alcanza con este grosor. Si requiere una resistencia a la combustión más prolongada, deberá realizar sus propios cálculos.


Esta tabla tiene como único objetivo proporcionar unas medidas de predimensionado y no sustituye el cálculo estructural del proyecto.

Resistencia al fuego: β=0,65mm/min

Viga de dos vanos

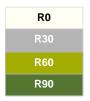
Deformación

Según la homologación Z 9.1-559; DIN 1052 (2008) y EN1995-1-1 (2006)

Carga permanente	Carga de uso		LUZ	Z ENTRE TE	RES APOYO	os ℓ₁	ℓ 2 =	0,8-ℓ₁ bis 1	.0-ℓ₁					
g _k *)	n _k					,		-,,	,1					
[KN/m]	[KN/m]	3,00 m	3,50 m	4,00 m	4,50 m	5,00 m	5,50 m	6,00 m	6,50 m	7,00 m				
	1,00	57 L3s	74 L3s	74 L3s	83 L3s	97 L3s	103 L3s	112 L3s	126 L3s					
	2,00	37 L38	74 L38	83 L3s	07 00	103 L3s	112 L3s	119 L3s	138 L5s	150 L5s				
4.00	2,80		74 L3s	07 00	97 L3s	112 L3s	119 L3s	138 L5s	45015-					
1,00	3,50	74 L3s	83 L3s	97 L3s	103 L3s	440 00	126 L3s	450155	150 L5s	165 L5s				
	4,00		07 00	103 L3s	112 L3s	119 L3s	45015-	150 L5s	165 L5s	182 L5s				
	5,00	83 L3s	97 L3s	103 L3s	119 L3s	138 L5s	150 L5s	165 L5s	182 L5s	196 L5s				
	1,00		74 L3s	83 L3s	97 L3s	103 L3s	112 L3s	126 L3s		150 L5s				
	2,00	74 L3s	74100	63 L38	97 L38	103 L3s	119 L3s	138 L5s	45015-					
4.50	2,80		74 L3s	07 00	103 L3s	112 L3s	420125		150 L5s	165 L5s				
1,50	3,50	74 L3s	83 L3s	97 L3s	103 L3s	440 00	126 L3s	150 L5s						
	4,00	74 L3S	07 00	103 L3s	112 L3s	119 L3s	45015-		165 L5s	182 L5s				
	5,00	83 L3s	97 L3s	103 L3s	119 L3s	138 L5s	150 L5s	165 L5s	182 L5s	196 L5s				
	1,00	74 L3s	74 L3s		97 L3s	112 L3s	119 L3s	138 L5s	150 50	165 L5s				
	2,00			97 L3s	103 L3s	112 L35	126 L3s		150 L5s	103 LOS				
0.00	2,80		83 L3s	91 L3S	402 00		138 L5s	450155						
2,00	3,50		74 L3s	74 L3s	74 L3s	74 L3s	74 L3s			103 L3s	119 L3s		150 L5s	165 L5s
	4,00		07 00	103 L3s	112 L3s		150 L5s							
	5,00	83 L3s	97 L3s	103 L3s	119 L3s	138 L5s		165 L5s	182 L5s	196 L5s				
	1,00	74 L3s		07.1.0-	103 L3s	112 L3s	126 L3s		150 L5s	165 L5s				
	2,00		83 L3s	97 L3s	103 L3s	119 L3s	138 L5s	450155						
0.50	2,80	74100		103 L3s				150 L5s	165 L5s	182 L5s				
2,50	3,50	74 L3s			112 L3s	126 L3s	150 L5s							
	4,00		97 L3s	103 L3s			150 LSS	405150	400 5-	40015-				
	5,00	83 L3s			119 L3s	138 L5s		165 L5s	182 L5s	196 L5s				
	1,00		83 L3s	97 L3s	103 L3s	119 L3s		150 L5s	165 L5s	182 L5s				
	2,00	74 L3s			442125	420 00		150 Los	100 LOS	102 LOS				
2.	2,80				112 L3s	126 L3s	150 L5s							
3,00	3,50		97 L3s	103 L3s		138 L5s	130 LSS	165 50	192150	196 L5s				
	4,00	83 L3s			119 L3s	150 50		165 L5s	182 L5s					
	5,00					150 L5s				211 L5s				

^{*} El peso propio del CLT ya se ha contemplado en la tabla con el valor ρ =500kg/m³.

Clase de servicio 1, categoría de carga útil A (ψ_0 =0,7; ψ_1 =0,5; ψ_2 =0,3)


- a) Comprobación de las tensiones de flexión
- b) Comprobación de esfuerzo cortante

$k_{\text{mod=}}0,8$

Aptitud de uso:

- a) Situación de medición casi permanente: w _{fin} ≤ ^ℓ/₂₅₀
- b) Situación de medición poco frecuente: w $_{Q,inst} \le {}^{\ell}/_{300}$; w $_{fin} w$ $_{G,inst} \le {}^{\ell}/_{200}$; $k_{def=}0,6$

Resistencia al fuego: β=0,65mm/min

El cálculo se ha realizado con la carga útil sobre un vano. Si hay carga útil sobre los dos vanos, puede reducirse en algunos casos el grosor necesario del forjado.

Esta tabla expone los grosores necesarios para la medición en frío (RO). El fondo de colores representa el periodo de resistencia al fuego que también se alcanza con este grosor. Si requiere una resistencia a la combustión más prolongada, deberá realizar sus propios cálculos.

Esta tabla tiene como único objetivo proporcionar unas medidas de predimensionado y no sustituye el cálculo estructural del proyecto.

